【视频讲解】R语言实现 Copula 算法建模相依性案例分析报告

最近我们被客户要求撰写关于Copula 的研究报告。copula是将多变量分布函数与其边缘分布函数耦合的函数,通常称为边缘。

由Kaizong Ye,Sherry Deng撰写

Copula是建模和模拟相关随机变量的绝佳工具。Copula的主要吸引力在于,通过使用它们,你可以分别对相关结构和边缘(即每个随机变量的分布)进行建模。 

copulas如何工作 

首先,让我们了解copula的工作方式。


视频

Copula算法原理和R语言股市收益率相依性可视化分析

探索见解

去bilibili观看

探索更多视频

 

 set.seed(100)

m < -  3
n < -  2000
 
z < -  mvrnorm(n,mu = rep(0,m),Sigma = sigma,empirical = T)

我们使用cor()和散点图矩阵检查样本相关性。 

 
pairs.panels(Z)

          [,1] [,2] [,3]
[1,] 1.0000000 0.3812244 0.1937548
[2,] 0.3812244 1.0000000 -0.7890814
[3,] 0.1937548 -0.7890814 1.0000000


自适应网页宽度的 Bilibili 视频

视频

时间序列分析模型 ARIMA-ARCH GARCH模型分析股票价格数据

探索见解

去bilibili观看

探索更多视频

 
pairs.panels(U)

这是包含新随机变量的散点图矩阵u。 

​我们可以绘制矢量的3D图表示u。 

现在,作为最后一步,我们只需要选择边缘并应用它。我选择了边缘为Gamma,Beta和Student,并使用下面指定的参数。

df < -  cbind(x1,x2,x3)
pairs.panels(DF)
 
          x1 x2 x3
x1 1.0000000 0.3812244 0.1937548
x2 0.3812244 1.0000000 -0.7890814
x3 0.1937548 -0.7890814 1.0000000

这是随机变量的散点图矩阵:

使用copula

让我们使用copula复制上面的过程。
现在我们已经通过copula(普通copula)指定了相依结构并设置了边缘,mvdc()函数生成了所需的分布。然后我们可以使用rmvdc()函数生成随机样本。

 
set.seed(100)
myCop < -   (param = c(0.4,0.2,-0.8),dim = 3,dispstr =“un”)
myMvd < -   (copula = myCop,margin = c(“gamma”,“beta”,“t”) 
            )

R语言多元Copula GARCH 模型时间序列预测

阅读文章


现在我们已经通过copula(普通copula)指定了相依结构并设置了边缘,mvdc()函数生成了所需的分布。然后我们可以使用该rmvdc()函数生成随机样本。

 
colnames(Z2)< -  c(“x1”,“x2”,“x3”)
pairs.panels(Z2)

模拟数据当然非常接近之前的数据,显示在下面的散点图矩阵中:


应用示例

现在为现实世界的例子。我们将拟合两个股票 ,并尝试使用copula模拟 。 
让我们在R中加载 :

cree < -  read.csv('cree_r.csv',header = F)$ V2
yahoo < -  read.csv('yahoo_r.csv',header = F)$ V2

在直接进入copula拟合过程之前,让我们检查两个股票收益之间的相关性并绘制回归线:
我们可以看到 正相关 :


在上面的第一个例子中,我选择了一个正态的copula模型,但是,当将这些模型应用于实际数据时,应该仔细考虑哪些更适合数据。例如,许多copula更适合建模非对称相关,其他强调尾部相关性等等。我对股票回报的猜测是,t-copula应该没问题,但是猜测肯定是不够的。本质上, 允许我们通过函数使用BIC和AIC执行copula选择 :

 
  pobs(as.matrix(cbind(cree,yahoo)))[,1]
  selectedCopula
 

$ PAR
[1] 0.4356302

$ PAR2
[1] 3.844534

 
拟合算法确实选择了t-copula并为我们估计了参数。 
让我们尝试拟合建议的模型,并检查参数拟合。

t.cop  
set.seed(500)
m < -  pobs(as.matrix(cbind(cree,yahoo)))
 
COEF(FIT)

  rho.1 df 
0.43563 3.84453 

 我们来看看我们刚估计的copula的密度

rho < -  coef(fit)[1]
df < -  coef(fit)[2]
 


现在我们只需要建立Copula并从中抽取3965个随机样本。

  rCopula(3965,tCopula(  = 2, ,df = df))
 

          [,1] [,2]
[1,] 1.0000000 0.3972454
[2,] 0.3972454 1.0000000

这是包含的样本的图:


 
t-copula通常适用于在极值(分布的尾部)中存在高度相关性的现象。
 

现在我们面临困难:对边缘进行建模。为简单起见,我们将假设正态分布 。因此,我们估计边缘的参数。

两个直方图显示如下

​​

现在我们在函数中应用copula,从生成的多变量分布中获取模拟观测值。最后,我们将模拟结果与原始数据进行比较。

这是在假设正态分布边缘和相依结构的t-copula的情况下数据的最终散点图:


正如您所看到的,t-copula导致结果接近实际观察结果 。 

让我们尝试df=1df=8:

 
显然,该参数df对于确定分布的形状非常重要。随着df增加,t-copula倾向于高斯copula。


可下载资源

关于作者

Kaizong Ye拓端研究室(TRL)的研究员。

本文借鉴了作者最近为《R语言数据分析挖掘必知必会 》课堂做的准备。

​非常感谢您阅读本文,如需帮助请联系我们!

 
QQ在线咨询
售前咨询热线
15121130882
售后咨询热线
0571-63341498

关注有关新文章的微信公众号


永远不要错过任何见解。当新文章发表时,我们会通过微信公众号向您推送。

技术干货

最新洞察

This will close in 0 seconds