R语言Copula模型分析股票市场板块相关性结构

最近我们被客户要求撰写关于copulas的研究报告。这篇文章是关于 copulas 和重尾的。

在全球金融危机之前,许多投资者是多元化的。

由Kaizong Ye,Liao Bao撰写

看看下面这张熟悉的图:

黑线是近似正态的。红线代表Cauchy分布,它是具有一个自由度的T分布的一个特殊情况。

也许是因为Cauchy和t分布混在一起。我们总是可以计算出经验方差。请看下图。这是对1自由度的t分布(红色的Cauchy分布)和5自由度的t分布(蓝色)的模拟结果。


视频

Copula算法原理和R语言股市收益率相依性可视化分析

探索见解

去bilibili观看

探索更多视频

为了比较不同的尾部行为,我们有我们所谓的尾部指数。简而言之,在几乎任何分布中,某个阈值之后的观测值(比如说最差的5%的情况下的观测值)都是渐进式的帕累托分布。


R语言Copula估计边缘分布模拟收益率计算投资组合风险价值VaR与期望损失ES

阅读文章


[F(x) = Pr(X > x) = \left{ \begin{array}{rl} (\frac{x_m}{x} )^ \alpha & \;  \mbox{ if $ x \geq x_m$}, \ 1 & \qquad \mbox{if $x < x_m$,} \end{array} \right]

其中x_m是截止点,α将决定尾巴的形状。α也被称为尾部指数。


随时关注您喜欢的主题


现在大家都知道,金融收益呈现出厚尾。这使得保持投资组合为左尾事件做好准备变得更加重要,因为在那个区域,由于相关性的增加,你会同时受到所有资产的影响(正如金融危机所证明的那样)。

在这个讨论中,_copulas_发挥了重要的作用。

_copulas_的概念是相当巧妙的。copula这个词起源于拉丁语,它的意思是捆绑。

当我们有两个(或更多)资产类别的收益,我们可以假设或模拟它们的分布。

做完这些之后,我们可以把它们 “粘贴 “在一起,只对相关部分进行建模,而不考虑我们最初对它们各自分布的建模方式。怎么做?

我们从英国统计学家 Ronald Fisher 开始,他在 1925 年证明了一个非常有用的性质,即任何连续随机变量的累积分布函数都是均匀分布的。形式上,对于任何随机变量 X,如果我们表示 前锋(X) 作为 X 的累积分布,则 F \sim 均匀(0,1)。请记住,当我们说 前锋(X) ,它仅意味着概率, F(x) = P(X&lt;x)。这就是 [0,1] 的来源,因为它只是一个概率。从三种不同的分布进行模拟:指数、伽玛和学生-t,变换它们并绘制直方图:

par(mfrow=c(3,1)) # 分割屏幕

apply(tm, 2, hist,xlab="", col = "azue") # 绘制

您可以通过这种方式转换任何连续分布。现在,将两个变换后的随机数表示为 u和 v。我们可以将它们“绑定”(copula): C(u,v)。 其中, C是一些函数,并且因为原始变量是“不可见的”(当我们将其转换为 Uniform 时消失了),所以我们现在只讨论两个变量之间的相关性。例如 ,C可以是具有一些相关参数的二元正态分布。我不会在这里写出双变量正态密度,但它只是一个密度,因此,它将说明在中心地带观察到两个变量在一起的概率,和/或在尾部一起的概率。这是绕过原始变量的分布,只谈相关结构的一种方式。

现在让我们对金融和消费必需品之间的相关结构进行建模。从拉取数据开始:

da0 = (getSymbols(sym\[1\])


for (i in 1:l){

da0 = getSymbols
w <- dailyReturn
w0 <- cbind(w0,w1)

}


apply(rt0, 2, mean) # 定义平均数

apply(rt0, 2, var) # 和标准差



cor(et0) # 无条件的相关关系。

我们现在要做的是按照讨论的方法对数据进行转换(称之为概率积分转换),并将其绘制出来。同时,我们模拟两个具有相同(量化-非条件)相关性的随机常模,并比较这两个数字。

desiy <- kde2d

contour

# 现在从两个具有相同相关性进行模拟。



smnom <- rmvnorm

trnorim_rm <- appl
mdni_im <- kde2d
plot
contour
title

乍一看,这两个数字看起来差不多。但更详细的观察发现,角落更快地收敛到(0,0)、(1,1)坐标。这也是由这些区域的深色等值线颜色表明的。请记住,模拟数据使用的是与真实数据相同的经验相关性,所以我们在这里讨论的其实只是结构。

现在让我们生成一个copula函数C,我们可以用它来 “包裹 “或 “捆绑 “我们的转换后的收益。我们定义了一个重尾(df=1)和一个轻尾(df=6)的copula。我们可以直观地看到这个函数实际上是什么样子的。这样做的方式与我们可视化正态密度的方式差不多,但现在因为它是一个双变量函数,所以它是一个三维图。

she <- 0.3


persp(colahevy)


接下来你可以看到通常的相关性度量是相同的,除了尾部指数,因为我们只讨论结构,而不是大小。

tau(colight)
tau(coheavy)
rho(colight)
rho(copheavy)
tailIpulight)
tailIheavy)

上下尾不一定相同。这只是 t-copula 是对称函数的一个特征。在应用中,应该使用更真实的非对称 copula。

现在我们定义边缘,并估计 copula 参数。为简单起见,我为收益定义了 Normal 边缘分布,但 copula 仍然是 t-dist 且重尾:

# 用从数据中估计的参数来定义你的边际。

copurmal <- mvdc

# 拟合copula。这个函数的默认值是隐藏警告,所以如果发生错误。

# 添加 "hideWarnings=FALSE",这样它就会告诉你是否有什么错误

coporm <- fitMvdc


该函数返回一个有那些可用的S4类。



copurm@mvc@cpla

coporm@estiat
coporm@fittng.sas

coporm@va.st

print
summary
est <- coeffic # 我们自己的估计值

mycop <- mvdc

# 从拟合的copula进行模拟

simd <- rMvdc

plot

相关结构看起来还不错–但你肯定可以看到正态边缘是不够的,有几个黑点(真实数据)在红色模拟簇之外。

顺便提一下,现在我们也可以估计那些没有预先指定形状的copulas,比如正态或t,但它们本身就是估计。这属于 “非参数copulas “这个更复杂的主题。


可下载资源

关于作者

Kaizong Ye拓端研究室(TRL)的研究员。在此对他对本文所作的贡献表示诚挚感谢,他在上海财经大学完成了统计学专业的硕士学位,专注人工智能领域。擅长Python.Matlab仿真、视觉处理、神经网络、数据分析。

本文借鉴了作者最近为《R语言数据分析挖掘必知必会 》课堂做的准备。

​非常感谢您阅读本文,如需帮助请联系我们!

 
QQ在线咨询
售前咨询热线
15121130882
售后咨询热线
0571-63341498

关注有关新文章的微信公众号


永远不要错过任何见解。当新文章发表时,我们会通过微信公众号向您推送。

技术干货

最新洞察

This will close in 0 seconds