在数据科学学习之旅中,我经常处理日常工作中的时间序列数据集,并据此做出预测。
最近我们被客户要求撰写销售量时间序列建模预测的研究报告。我将通过以下步骤:
探索性数据分析(EDA)
- 问题定义(我们要解决什么)
- 变量识别(我们拥有什么数据)
- 单变量分析(了解数据集中的每个字段)
- 多元分析(了解不同领域和目标之间的相互作用)
- 缺失值处理
- 离群值处理
- 变量转换
预测建模
- LSTM
- XGBoost
问题定义
我们在两个不同的表中提供了商店的以下信息:
- 商店:每个商店的ID
- 销售:特定日期的营业额(我们的目标变量)
- 客户:特定日期的客户数量
- StateHoliday:假日
- SchoolHoliday:学校假期
- StoreType:4个不同的商店:a,b,c,d
- CompetitionDistance:到最近的竞争对手商店的距离(以米为单位)
- CompetitionOpenSince [月/年]:提供最近的竞争对手开放的大致年份和月份
- 促销:当天促销与否
- Promo2:Promo2是某些商店的连续和连续促销:0 =商店不参与,1 =商店正在参与
- PromoInterval:描述促销启动的连续区间,并指定重新开始促销的月份。
利用所有这些信息,我们预测未来6周的销售量。
对于实际销售数据中, 数据存在周期性, 季节性的变化, 通常为非平稳的时间序列. 通过差分平稳化后, 虽然在ARIMA模型中表现的较好, 但却丢失了周期性和季节性特征, 并且平稳的数据无法表现出现实销售增量变化, ARIMA模型只依靠内生变量, 模型过于简单, 无法捕捉序列中的非线性因素. 神经网络算法在处理非线性问题具有独特的优势, LSTM模型的加入可以解决以下几个问题, 首先是销售数据的连续性, 通过特殊的数据输入结构使得模型在预测时结合了历史的状态, 其次对比与传统的RNNs解决了输入变长的问题, 再者实际销量的影响因素较多, 而节假日, 策略量的变化会带来销售量的异常变化, 通过多变量的模型可以提升拟合的精度. 此时特征较多, 需要经过处理再放入神经网络的模型中
# 让我们导入EDA所需的库:
import numpy as np # 线性代数
import pandas as pd # 数据处理,CSV文件I / O导入(例如pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
plt.style.use("ggplot") # 绘图
#导入训练和测试文件:
train_df = pd.read_csv("../Data/train.csv")
test_df = pd.read_csv("../Data/test.csv")
#文件中有多少数据:
print("在训练集中,我们有", train_df.shape[0], "个观察值和", train_df.shape[1], 列/变量。")
print("在测试集中,我们有", test_df.shape[0], "个观察值和", test_df.shape[1], "列/变量。")
print("在商店集中,我们有", store_df.shape[0], "个观察值和", store_df.shape[1], "列/变量。")
在训练集中,我们有1017209个观察值和9列/变量。
在测试集中,我们有41088个观测值和8列/变量。
在商店集中,我们有1115个观察值和10列/变量。
首先让我们清理 训练数据集。
#查看数据
train_df.head().append(train_df.tail()) #显示前5行。
train_df.isnull().all()
Out[5]:
Store False
DayOfWeek False
Date False
Sales False
Customers False
Open False
Promo False
StateHoliday False
SchoolHoliday False
dtype: bool
让我们从第一个变量开始-> 销售量
opened_sales = (train_df[(train_df.Open == 1) #如果商店开业
opened_sales.Sales.describe()
Out[6]:
count 422307.000000
mean 6951.782199
std 3101.768685
min 133.000000
25% 4853.000000
50% 6367.000000
75% 8355.000000
max 41551.000000
Name: Sales, dtype: float64
<matplotlib.axes._subplots.AxesSubplot at 0x7f7c38fa6588>
看一下顾客变量
In [9]:
train_df.Customers.describe()
Out[9]:
count 1.017209e+06
mean 6.331459e+02
std 4.644117e+02
min 0.000000e+00
25% 4.050000e+02
50% 6.090000e+02
75% 8.370000e+02
max 7.388000e+03
Name: Customers, dtype: float64
<matplotlib.axes._subplots.AxesSubplot at 0x7f7c3565d240>
train_df[(train_df.Customers > 6000)]
我们看一下假期 变量。
train_df.StateHoliday.value_counts()
0 855087
0 131072
a 20260
b 6690
c 4100
Name: StateHoliday, dtype: int64
train_df.StateHoliday_cat.count()
1017209
train_df.tail()
train_df.isnull().all() #检查缺失
Out[18]:
Store False
DayOfWeek False
Date False
Sales False
Customers False
Open False
Promo False
SchoolHoliday False
StateHoliday_cat False
dtype: bool
让我们继续进行商店分析
store_df.head().append(store_df.tail())
#缺失数据:
Store 0.000000
StoreType 0.000000
Assortment 0.000000
CompetitionDistance 0.269058
CompetitionOpenSinceMonth 31.748879
CompetitionOpenSinceYear 31.748879
Promo2 0.000000
Promo2SinceWeek 48.789238
Promo2SinceYear 48.789238
PromoInterval 48.789238
dtype: float64
In [21]:
让我们从缺失的数据开始。第一个是 CompetitionDistance
store_df.CompetitionDistance.plot.box()
让我看看异常值,因此我们可以在均值和中位数之间进行选择来填充NaN
缺少数据,因为商店没有竞争。 因此,我建议用零填充缺失的值。
store_df["CompetitionOpenSinceMonth"].fillna(0, inplace = True)
让我们看一下促销活动。
store_df.groupby(by = "Promo2", axis = 0).count()
如果未进行促销,则应将“促销”中的NaN替换为零
我们合并商店数据和训练集数据,然后继续进行分析。
第一,让我们按销售量、客户等比较商店。
随时关注您喜欢的主题
f, ax = plt.subplots(2, 3, figsize = (20,10))
plt.subplots_adjust(hspace = 0.3)
plt.show()
从图中可以看出,StoreType A拥有最多的商店,销售和客户。但是,StoreType D的平均每位客户平均支出最高。只有17家商店的StoreType B拥有最多的平均顾客。
我们逐年查看趋势。
sns.factorplot(data = train_store_df,
# 我们可以看到季节性,但看不到趋势。 该销售额每年保持不变
<seaborn.axisgrid.FacetGrid at 0x7f7c350e0c50>
我们看一下相关图。
"CompetitionOpenSinceMonth", "CompetitionOpenSinceYear", "Promo2
<matplotlib.axes._subplots.AxesSubplot at 0x7f7c33d79c18>
我们可以得到相关性:
- 客户与销售(0.82)
- 促销与销售(0,82)
- 平均顾客销量 vs促销(0,28)
- 商店类别 vs 平均顾客销量 (0,44)
我的分析结论:
- 商店类别 A拥有最多的销售和顾客。
- 商店类别 B的每位客户平均销售额最低。因此,我认为客户只为小商品而来。
- 商店类别 D的购物车数量最多。
- 促销仅在工作日进行。
- 客户倾向于在星期一(促销)和星期日(没有促销)购买更多商品。
- 我看不到任何年度趋势。仅季节性模式。
可下载资源
关于作者
Kaizong Ye是拓端研究室(TRL)的研究员。在此对他对本文所作的贡献表示诚挚感谢,他在上海财经大学完成了统计学专业的硕士学位,专注人工智能领域。擅长Python.Matlab仿真、视觉处理、神经网络、数据分析。
本文借鉴了作者最近为《R语言数据分析挖掘必知必会 》课堂做的准备。
非常感谢您阅读本文,如需帮助请联系我们!