R语言Markowitz马克维茨投资组合理论分析和可视化

至少在统计学的角度上,要评估一个投资组合是否最优是很困难的。

由Kaizong Ye,Sherry Deng撰写

之前我们在关于投资组合优化相关的内容中已经看到了Markowitz的理论其中给出了预期收益和协方差矩阵

现在,我们可以可视化下面的有效边界(和可接受的投资组合)

×

一:马科维茨投资组合理论

投资组合(Portfolio)是由投资人或金融机构所持有的股票、债券、衍生金融产品等组成的集合。投资组合的目的在于分散风险,投资组合按粗略的分类有三种不同的模式可供运用,即积极的、中庸的和保守的。

投资组合理论[1]:若干种证券组成的投资组合,其收益是这些证券收益的加权平均数,但是其风险不是这些证券风险的加权平均风险,投资组合能降低非系统性风险。人们进行投资,本质上是在不确定性的收益和风险中进行选择。投资组合理论用均值-方差来刻画这两个关键因素。其中均值是指投资组合的期望收益率,它是单只证券的期望收益率的加权平均,权重为相应的投资比例。方差是指投资组合的收益率的方差。我们把收益率的标准差称为波动率,它刻画了投资组合的风险。

那么在证券投资决策中应该怎样选择收益和风险的组合呢?投资组合理论主要通过研究"理性投资者"优化投资组合。所谓理性投资者:是指在给定期望风险水平下对期望收益进行最大化,或者在给定期望收益水平下对期望风险进行最小化。

 

二:求解最优投资组合过程

本文最优投资组合思想是:在给定期望收益水平下对期望风险进行最小化的投资。利用的是马克维茨的均值-方差模型:

本文实现最优投资组合的主要步骤:

1:得到夏普比率最大时的期望收益

2:得到标准差最小时的期望收益

3:根据1,2所得的期望收益,获取预估期望收益范围,在预估期望收益范围内取不同值,获取其最小方差,得到预估期望收益与最小方差的关系即获得最小方差边界。

4:最小方差边界位于最小方差资产组合上方为有效边界

5;获取最小方差边界上最大夏普比率,绘出CML

6:得到最小方差边界上最大夏普比率处各股票权重



热门课程

R语言数据分析挖掘必知必会

面对扑面而来的数据浪潮,包含Google、Facebook等国际企业,都已采用R语言进行数据分析

探索课程

实际上很难在该图上将重要的东西可视化:收益之间的相关性。它不是点(单变量,具有预期收益和标准差),而是有效边界。例如,这是我们的相关矩阵

我们实际上可以更改FT500和FTSE100之间的相关性(此处为.786)

例如,相关系数为0.6,我们得到以下有效边界

很明显,相关性很重要。但更重要的是,期望收益和协方差不是给出而是估计的。以前,我们确实将标准估计量用于方差矩阵。但是可以考虑使用另一个更可靠的估计器

它确实影响了点的(水平)位置,因为方差现在以及有效边界都不同,而方差明显更低。

为了说明最后一点,说明我们确实有基于观察到的收益的估计量,如果我们观察到不同的收益怎么办?了解可能发生的情况的一种方法是使用引导程序,例如每日收益。

或其他资产

这是我们在(估计的)有效边界上得到的

因此,至少在统计学的角度上,要评估一个投资组合是否最优是很困难的。


可下载资源

关于作者

Kaizong Ye拓端研究室(TRL)的研究员。

本文借鉴了作者最近为《R语言数据分析挖掘必知必会 》课堂做的准备。

​非常感谢您阅读本文,如需帮助请联系我们!

 
QQ在线咨询
售前咨询热线
15121130882
售后咨询热线
0571-63341498