R语言向量自回归VAR的迭代多元预测估计 GDP 增长率时间序列

VARs的结构也允许联合检验多个方程的限制。

由Kaizong Ye,Liao Bao撰写

例如,检验滞后p的所有回归变量的系数是否为零,可能是有意义的。

这相当于检验滞后阶数p-1是正确的原假设。系数估计值的大样本联合正态性很方便,因为它意味着我们可以简单地使用F检验来解决这个检验问题。

×

考虑以下简单的双变量系统(序列 [公式] 的时间路径受到序列 [公式] 的当期或过去的实际值的影响;序列 [公式] 的时间路径受到序列 [公式] 的当期或过去的实际值的影响)

[公式] 其中,假设① [公式] 和 [公式] 都是平稳的;② [公式] 和 [公式] 是白噪声干扰项,标准差分别为 [公式] ;③ [公式] 和 [公式] 是独立不相关的白噪声干扰项。

因为最长的滞后长度为1,因此,式(1)和式(2)构成了一个1阶向量自回归(vector autoregression,VAR)

因为允许[公式] 和 [公式]相互影响,所以,系统结构中结合了反馈因素。例如, [公式] 是1单位 [公式] 的变化对 [公式] 的影响, [公式] 表示1单位 [公式] 对 [公式] 的影响。注意,[公式] 和 [公式]分别是[公式] 和 [公式]中的新息(或冲击)。当然,如果 [公式] 不为0,则[公式]同时对 [公式] 有一个间接地影响。如果 [公式] 不为0,则[公式]同时对 [公式] 有一个间接地影响。

我们可以进一步地将方程写成如下形式:

[公式]

[公式]

其中,

[公式]

用 [公式] 左乘以方程,得到向量自回归(VAR)模型的标准形式

[公式]

式中, [公式] 。

为了便于标记,我们定义

[公式]

那么,我们可以将式(3)表示为

[公式]

式(1)、(2)所代表的系统和式(4)、(5)所代表的的系统的差异在于,第一组被称为结构性VAR或原始系统,第二组被称为标准型VAR。

值得注意的是,误差项(即 [公式] )是由两个冲击 [公式] 的组合。因为

[公式]

因此,我们很容易得到

[公式]

接着,我们有

[公式]

并且, [公式] 的自协方差为

[公式]

因此, [公式] 是一个平稳的过程,均值为0,方差恒定,并且所有的自协方差为0。同理[公式]

所要注意的是 [公式] 和 [公式] 是相关的,它们的互协方差为

[公式]

所以,两个冲击[公式] 和 [公式] 是相关的。在特殊情况下,令 [公式] (无同期影响),则冲击不相关。

[公式] 和 [公式]冲击的方差-协方差矩阵写为

[公式]

因为 [公式] 的所有元素在时间上都是独立的,所以可使用更紧凑的形式

[公式]

其中, [公式] 。


参考文献:

沃尔特·恩格斯.《应用计量经济学:时间序列分析》.机械工业出版社.2012


这种检验统计量的明确公式相当复杂,但我们使用R函数可以轻松完成这种计算。

另一种确定最佳滞后长度的方法是像BIC这样的信息标准,我们对单变量时间序列回归进行了介绍。就像单方程的情况一样,对于多方程模型,我们选择具有最小的BIC(p)的模型,其中

其中 ^Σu表示对 VAR 误差的 k×k协方差矩阵的估计,det(·)表示行列式。

对于单变量分布式滞后模型,应该仔细考虑要包含在 VAR 中的变量,因为添加不相关的变量会通过增加估计误差来降低预测准确性。这一点特别重要,因为要估计的参数数量与 VAR 建模的变量数量成二次增长。

GDP增长率和期限利差的VAR模型

我们现在展示如何估计 GDP 增长率 GDPGR 和期限价差 TSpread 的 VAR 模型。关于 GDP 增长非平稳性的讨论,我们使用 1981:Q1 到 2012:Q4 的数据。两个模型方程是

数据集包含从 1947 年到 2004 年实际(即通胀调整后)GDP 的季度数据。我们首先导入数据集并进行一些格式化。


Bilibili Video Embed

视频

向量自回归VAR数学原理及R语言软件经济数据脉冲响应分析实例

探索见解

去bilibili观看

探索更多视频

#加载宏观经济数据集
UWQ <- read_xlsx

#格式化日期列
UWQ$Date <- as.yearqtr(USMte, format = "%Y:0%q")

# 将GDP定义为ts对象
GDP <- ts
# 将GDP增长定义为一个ts对象
GDPoth <- ts

# 3个月的国库券利率是一个'ts'对象
MS <- ts

# 10年期国债的利率是一个'ts'对象
TS <- ts

我们通过 OLS 分别估计这两个方程,并使用test 来获得稳健的标准误差。

# 估计两个方程

# 稳健的系数总结
coeftest(VAR1, vcov.)

Matlab创建向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列

阅读文章


我们最终得到以下结果:

VAR可用于获得与上述相同的系数估计,因为它也适用于每个方程的 OLS。

#使用\`VAR()\`设置数据进行估计
VARta <- window 
# 使用\`VAR()\`估计模型系数
VARest <- VAR


随时关注您喜欢的主题


VAR返回可以传递给常用函数的 lm 对象列表,例如 summary() ,因此可以直接获取各个方程的模型统计信息。

#从'VAR()'的输出中获得 adj.R^2
summaryadj.r.squared

我们可以使用单个模型对象来进行格兰杰因果检验。

# 格兰杰因果关系测试。

# 检验期限差在解释GDP增长方面是否无用
linearHypothesis

# 检验GDP增长是否没有解释期差的能力
linearHypothesis

两个格兰杰因果关系检验都拒绝了 5%的水平。

使用迭代 VAR 的迭代多元预测

迭代预测的理念,在一个时期内  T + 2 迭代预测的想法,是基于:到目前为止T时期的观察结果 是使用提前一个时期的预测作为中间步骤。即,在预测 T+2 期间的水平序列时,将 T+1 期间的预测用作观察值。这可以推广到提前 h 期预测,其中 T 和 T+h之间的所有中间期都必须被预测,因为它们被用作过程中的观察。

关键概念

迭代多期预测

_迭代多期 AR 预测_的步骤  是:

  • 使用 OLS 估计 AR(p) 模型并计算提前一期的预测。
  • 使用提前一期预测获得提前两期预测。
  • 继续迭代以获得更远的未来的预测。

迭代的多期 VAR 预测 按如下方式进行:

  • 使用每个方程的 OLS 估计 VAR(p) 模型,并计算 VAR 中所有 变量的提前一期预测 。
  • 使用提前一期的预测来获得提前两期的预测。
  • 继续迭代以获得对未来 VAR 中所有变量的预测。

由于 VAR 使用各个其他变量的滞后对所有变量进行建模,因此我们需要计算 所有 变量的预测。当 VAR 很大时,这样做可能很麻烦,但幸运的是,有 R 函数可以促进这一点。例如,函数 predict() 可用于获得由函数 VAR() 估计的 VAR 模型的迭代多元预测。

下面的代码块显示了如何使用模型对象VAR_est计算到2015:Q1期间的GDP增长和期限利差的迭代预测,也就是h=10。

# 计算未来10个季度的GDP增长和期限差的迭代预测。
forecasts <- predict

这表明使用截至 2012:Q4 的数据对 2013:Q2 的 GDP 增长的前两个季度预测为 1.69。同期,期限利差的迭代 VAR 预测为 1.88。

返回的矩阵 predict(VAR_est) 还包括 95% 的预测区间。

我们还可以在 的输出上调用 plot() 来绘制两个变量的迭代预测。

# 将迭代后的预测结果可视化
plot

直接多期预测

直接多期预测使用一个模型,其中预测因子被适当地滞后,这样就可以直接使用现有的观测值来进行预测。

例如,为了获得对 GDP 增长和期限利差的提前两个季度的预测,我们首先估计方程

然后将 GDPGR2012:Q4、GDPGR2012:Q3、TSpread2012:Q4 和 TSpread2012:Q3 的值代入两个方程。

# 直接计算两个季度前的预测结果
coef(VARQ1) %*%


coef(VARQ2) %*%

应用经济学家经常使用迭代法,因为就MSFE而言,这种预测更可靠,前提是一周期前模型是正确指定的。如果情况不是这样,例如因为VAR中的一个方程被认为是错误的,那么使用直接预测可能是有益的,因为这时迭代法会有偏差,因此MSFE比直接法高。


可下载资源

关于作者

Kaizong Ye拓端研究室(TRL)的研究员。在此对他对本文所作的贡献表示诚挚感谢,他在上海财经大学完成了统计学专业的硕士学位,专注人工智能领域。擅长Python.Matlab仿真、视觉处理、神经网络、数据分析。

本文借鉴了作者最近为《R语言数据分析挖掘必知必会 》课堂做的准备。

​非常感谢您阅读本文,如需帮助请联系我们!

 
QQ在线咨询
售前咨询热线
15121130882
售后咨询热线
0571-63341498

关注有关新文章的微信公众号


永远不要错过任何见解。当新文章发表时,我们会通过微信公众号向您推送。

技术干货

最新洞察

This will close in 0 seconds