R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型

向量自回归(VAR)模型的一般缺点是,估计系数的数量与滞后的数量成比例地增加。

由Kaizong Ye,Liao Bao撰写

因此,随着滞后次数的增加,每个参数可用的信息较少

在贝叶斯VAR文献中,减轻这种所谓_的维数诅咒的_一种方法是_随机搜索变量选择_(SSVS),由George等人提出(2008)。

SSVS的基本思想是将通常使用的先验方差分配给应包含在模型中的参数,将不相关参数的先验方差接近零。

这样,通常就可以估算出相关参数,并且无关变量的后验值接近于零,因此它们对预测和冲激响应没有显着影响。这是通过在模型之前添加层次结构来实现的,其中在采样算法的每个步骤中评估变量的相关性。

这篇文章介绍了使用SSVS估计贝叶斯向量自回归(BVAR)模型。它使用Lütkepohl(2007)的数据集E1,其中包含有关1960Q1至1982Q4德国固定投资,可支配收入和消费支出的数据。加载数据并生成数据:

 # 加载和转换数据
e1 <- diff(log(e1))

# 生成VAR
data <- gen_var(e1, p = 4, deterministic = "const")

# 获取数据矩阵
y <- data$Y[, 1:71]
x <- data$Z[, 1:71]

估算值

根据George等人所述的半自动方法来设置参数的先验方差(2008)。对于所有变量,先验包含概率设置为0.5。误差方差-协方差矩阵的先验信息不足。


Bilibili Video Embed

视频

向量自回归VAR数学原理及R语言软件经济数据脉冲响应分析实例

探索见解

去bilibili观看

探索更多视频

# 重置随机数提高可重复性
set.seed(1234567)

t <- ncol(y) # 观察数
k <- nrow(y) # 内生变量数
m <- k * nrow(x) # 估计系数数

# 系数先验
a_mu_prior <- matrix(0, m) # 先验均值的向量

# SSVS先验(半自动方法)
ols <- tcrossprod(y, x) %*% solve(tcrossprod(x)) # OLS估计
sigma_ols <- tcrossprod(y - ols %*% x) / (t - nrow(x)) # OLS误差协方差矩阵
cov_ols <- kronecker(solve(tcrossprod(x)), sigma_ols)
se_ols <- matrix(sqrt(diag(cov_ols))) # OLS标准误


# 先验参数
prob_prior <- matrix(0.5, m)

#  方差-协方差矩阵
u_sigma_df_prior <- 0 # 方差-协方差矩阵
u_sigma_scale_prior <- diag(0, k) # 先验协方差矩阵
u_sigma_df_post <- t + u_sigma_df_prior # 后验自由度

初始参数值设置为零,这意味着在Gibbs采样器的第一步中应相对自由地估算所有参数。

可以直接将SSVS添加到VAR模型的标准Gibbs采样器算法中。在此示例中,常数项从SSVS中排除,这可以通过指定来实现include = 1:36。具有SSVS的Gibbs采样器的输出可以用通常的方式进一步分析。因此,可以通过计算参数的绘制方式获得点估计:


R语言估计时变VAR模型时间序列的实证研究分析案例

阅读文章


 ##          invest income   cons
## invest.1 -0.102  0.011 -0.002
## income.1  0.044 -0.031  0.168
## cons.1    0.074  0.140 -0.287
## invest.2 -0.013  0.002  0.004
## income.2  0.015  0.004  0.315
## cons.2    0.027 -0.001  0.006
## invest.3  0.033  0.000  0.000
## income.3 -0.008  0.021  0.013
## cons.3   -0.043  0.007  0.019
## invest.4  0.250  0.001 -0.005
## income.4 -0.064 -0.010  0.025
## cons.4   -0.023  0.001  0.000
## const     0.014  0.017  0.014 


随时关注您喜欢的主题


还可以通过计算变量的均值来获得每个变量的后验概率。从下面的输出中可以看出,在VAR(4)模型中似乎只有几个变量是相关的。常数项的概率为100%,因为它们已从SSVS中排除。

 ##          invest income cons
## invest.1   0.43   0.23 0.10
## income.1   0.10   0.18 0.67
## cons.1     0.11   0.40 0.77
## invest.2   0.11   0.09 0.14
## income.2   0.08   0.07 0.98
## cons.2     0.07   0.06 0.08
## invest.3   0.19   0.07 0.06
## income.3   0.06   0.13 0.10
## cons.3     0.09   0.07 0.12
## invest.4   0.78   0.09 0.16
## income.4   0.13   0.09 0.18
## cons.4     0.09   0.07 0.06
## const      1.00   1.00 1.00 

给定这些值,研究人员可以按照常规方式进行操作,并根据Gibbs采样器的输出获得预测和脉冲响应。这种方法的优势在于它不仅考虑了参数不确定性,而且还考虑了模型不确定性。

hist(draws_a[6,], 

这可以通过系数的直方图来说明,该直方图描述了收入的第一个滞后项与消费当前值之间的关系。

通过两个峰描述模型不确定性,并通过右峰在它们周围的分布来描述参数不确定性。

但是,如果研究人员不希望使用模型,变量的相关性可能会从采样算法的一个步骤更改为另一个步骤,那么另一种方法将是仅使用高概率的模型。这可以通过进一步的模拟来完成,在该模拟中,对于不相关的变量使用非常严格的先验,而对于相关参数则使用没有信息的先验。

后方抽取的均值类似于Lütkepohl(2007,5.2.10节)中的OLS估计值:

 ##          invest income   cons
## invest.1 -0.219  0.001 -0.001
## income.1  0.000  0.000  0.262
## cons.1    0.000  0.238 -0.334
## invest.2  0.000  0.000  0.001
## income.2  0.000  0.000  0.329
## cons.2    0.000  0.000  0.000
## invest.3  0.000  0.000  0.000
## income.3  0.000  0.000  0.000
## cons.3    0.000  0.000  0.000
## invest.4  0.328  0.000 -0.001
## income.4  0.000  0.000  0.000
## cons.4    0.000  0.000  0.000
## const     0.015  0.015  0.014 

bvar功能可用于将Gibbs采样器的相关输出收集到标准化对象中,例如predict获得预测或irf进行脉冲响应分析。

评价

 hin(bvar_est, thin = 5) 

预测

可以使用函数获得置信区间的预测predict

plot(bvar_pred)

脉冲响应分析

 plot(OIR


可下载资源

关于作者

Kaizong Ye拓端研究室(TRL)的研究员。在此对他对本文所作的贡献表示诚挚感谢,他在上海财经大学完成了统计学专业的硕士学位,专注人工智能领域。擅长Python.Matlab仿真、视觉处理、神经网络、数据分析。

本文借鉴了作者最近为《R语言数据分析挖掘必知必会 》课堂做的准备。

​非常感谢您阅读本文,如需帮助请联系我们!

 
QQ在线咨询
售前咨询热线
15121130882
售后咨询热线
0571-63341498

关注有关新文章的微信公众号


永远不要错过任何见解。当新文章发表时,我们会通过微信公众号向您推送。

技术干货

最新洞察

This will close in 0 seconds