R语言马尔可夫转换模型研究交通伤亡人数事故预测

本文描述了R语言中马尔克夫转换模型的分析过程。

由Kaizong Ye,Coin Ge撰写

首先,对模拟数据集进行详细建模。接下来,将马尔可夫转换模型拟合到具有离散响应变量的真实数据集。用于验证对这些数据集建模的不同方法

模拟实例

示例数据是一个模拟数据集,用于展示如何检测两种不同模式的存在:一种模式中的响应变量高度相关,另一种模式中的响应仅取决于外生变量x。自相关观测值的区间为1到100、151到180 和251到300。每种方案的真实模型为:

×

1. 马尔可夫链

表示随机变量X在离散时间t时刻的取值。若该变量随时间变化的转移概率仅依赖于它的当前值,即:

也就是时候状态转移概率指依赖于前一个状态,称这个变量为马尔可夫变量,其中 为随机变量X可能的状态,这个性质称为马尔可夫性质,具有马尔可夫性质的随机过程称为马尔可夫过程。

马尔可夫链是满足马尔可夫性质的随机过程,指在一段时间内随机变量X的取值序列()满足上述性质

2、转移概率

马尔可夫链是通过转移概率定义的,转移概率指随机变量从一个时刻到下一个时刻,从状态转移到状态的概率:

表示变量X在时刻t的取值为的概率,则随机变量X在时刻t+1的取值为的概率为:

假设状态的数目为n,则:

3 马尔可夫链的平稳分布

  • 1.周期性:即经过有限次的状态转移,又回到了自身

  • 马尔可夫模型如下所示:

    1. 不可约:两个状态之间的转移

可见状态之间没有转换概率,但是隐含态和可见态之间存在一个概率叫做输出概率。
上述概率转移公式就是表示模型中状态转移的情况。
如果一个马尔可夫过程既没有周期性,又不可约,则称为各态遍历的。

对于一个各态遍历的马尔可夫过程,无论初始值取何值,随着转移次数的增多,随机变量的取值分布最终都收敛到唯一的平稳分布

其中为转移概率矩阵。


图1中的曲线表明,在不存在自相关的区间中,响应变量y具有与协变量x相似的行为。拟合线性模型以研究协变量x如何解释变量响应y。


热门课程

R语言数据分析挖掘必知必会

面对扑面而来的数据浪潮,包含Google、Facebook等国际企业,都已采用R语言进行数据分析

探索课程

图1:模拟数据,y变量是响应变量


协变量确实很重要,但是模型解释的数据行为非常糟糕。图1中的线性模型残差图表明,它们的自相关很强。残差的诊断图(图2)确认它们似乎不是白噪声,并且具有自相关关系。接下来,将自回归马尔可夫转换模型(MSM-AR)拟合到数据。

自回归部分设置为1。为了指示所有参数在两个周期中都可以不同,将转换参数(sw)设置为具有四个分量的矢量。拟合线性模型时的最后一个值称为残差。



 
标准偏差。有一些选项可控制估算过程,例如用于指示是否完成了过程并行化的逻辑参数。
 

模型mod.mswm具有协方差x非常显着的状态,而在其他情况下,自相关变量也非常重要。两者的R平方均具有较高的值。最后,转移概率矩阵具有较高的值,这表明很难从接通状态更改为另一个状态。该模型可以完美地检测每个状态的周期。残差看起来像是白噪声,它们适合正态分布。而且,自相关消失了。

 图形显示已完美检测到每个方案的周期。

交通事故
 

交通数据包含2010年西班牙交通事故的每日人数,平均每日温度和每日降水量。该数据的目的是研究死亡人数与气候条件之间的关系。由于在周末和工作日变量之间存在不同的行为,因此我们说明了在这种情况下使用广义马尔科夫转换模型的情况。
在此示例中,响应变量是计数变量。因此,我们拟合了泊松广义线性模型。


下一步,使用拟合马尔可夫转换模型。为了适应广义马尔可夫转换模型,必须包含族参数,而且glm没有标准偏差参数,因此sw参数不包含其切换参数。

两种状态都有显着的协变量,但降水协变量仅在这两种状态之一中是显着的。

由于模型是通用线性模型的扩展,因此从类对象计算出图中的Pearson残差。该残差有白噪声的经典结构。残差不是自相关的,但它们与正态分布不太吻合。但是,Pearson残差的正态性不是广义线性模型验证的关键条件。

我们可以看到短时间内的状态分配,因为较大的状态基本上包含工作日。


可下载资源

关于作者

Kaizong Ye拓端研究室(TRL)的研究员。

本文借鉴了作者最近为《R语言数据分析挖掘必知必会 》课堂做的准备。

​非常感谢您阅读本文,如需帮助请联系我们!

 
QQ在线咨询
售前咨询热线
15121130882
售后咨询热线
0571-63341498