广义线性模型(GLMs)算法和零膨胀模型分析

广义线性模型(GLM) 是通过连接函数,把自变量线性组合和因变量的概率分布连起来

该概率分布可以是高斯分布、二项分布、多项式分布、泊松分布、伽马分布、指数分布。连接函数有:

  • 平方根连接(用于泊松模型)

考虑一些均值μ和方差σ2的随机变量Y。利用泰勒展开式


热门课程

R语言数据分析挖掘必知必会

面对扑面而来的数据浪潮,包含Google、Facebook等国际企业,都已采用R语言进行数据分析

探索课程

假使​,考虑平方根变换g(y)= \ sqrt {y} g(y)= y,则第二个等式变为

因此,通过平方根变换,我们具有方差稳定性,可以将其解释为一定的同调性。

  • 伯努利模型的对数函数

假设变量是泊松变量,

先前的模型看起来像是伯努利回归分析,其中H作为链接函数,\ mathbb {P}

因此,现在假设代替观察N,我们观察到Y = 1(N> 0)。在那种情况下,运行带有对数链接函数的伯努利回归,首先与对原始数据运行泊松回归,然后在我们的二进制变量零和非零上使用。让我们先生成一些模拟数据,比较从标准逻辑回归得到的eλx和px

拟合很好,现在,如果我们对婚姻出轨数据集,由雷·费尔,在1978年出版的  期刊政治经济学  (含563个观察,九个变量)进行建模:

在这种情况下,这两种模型结果是非常不同的。第二个模型也是

我们如何解释呢?是因为泊松模型不好吗?我们在这里运行零膨胀模型进行比较,

由于零的膨胀,我们在这里拒绝了泊松分布的假设,可以使用对数连接来检查泊松分布是否是一个好的模型。


可下载资源

​非常感谢您阅读本文,如需帮助请联系我们!


关于作者

Kaizong Ye拓端研究室(TRL)的研究员。

本文借鉴了作者最近为《R语言数据分析挖掘必知必会 》课堂做的准备。


 
QQ在线咨询
售前咨询热线
15121130882
售后咨询热线
0571-63341498